Extending partial automorphisms of graphs

David Bradley-Williams

Institute of Computer Science of Charles University (Prague)

Theoretical and Computational Algebra 2025, Evora

loint works with Sofia Brenner (Kassel), Peter J. Cameron (St. Andrews), Jan Hubička (Charles University, Prague), and Matěj Konečný (Dresden)

D. Bradley-Williams (Charles, Prague)

Extending partial auts of graphs

July 2025

Thank you Peter, time to party!

On the day of my PhD viva (2015)

Definition (EPPA: Extension Property for Partial Automorphisms)

Let \mathscr{C} be a class of finite structures. Here $G \leq H$ (induced) in \mathscr{C} .

- When **every** partial automorphism of *G* extends to an automorphism of *H*, *H* is called an **EPPA witness** for *G*.
- If every G in \mathscr{C} has an EPPA witness in \mathscr{C} , say \mathscr{C} has EPPA.

Theorem (E. Hrushovski (1992))

The class of finite graphs has EPPA.

Hence sometimes called the Hrushovski Property.

Examples: Subgraphs of finite homogeneous graphs

Definition (Homogeneous finite graph)

H homogeneous:

every partial automorphism of H extends to an automorphism;

= H is an EPPA witness of itself.

Theorem (T. Gardiner (1976))

The finite homogeneous graphs are:

- disjoint unions of cliques K_n, complements of these;
- The 5-cycle C₅;
- The rooks graph $L(K_{3,3}) = line$ graph of complete bipartite graph $K_{3,3}$.

Note: C_6 , P_4 , $K_1 \cup K_{1,2} \leq L(K_{3,3})$. So $L(K_{3,3})$ is an EPPA witness for them.

Theorem (E. Hrushovski (1992))

The class of finite graphs has EPPA.

A (final) combinatorial ingredient required in the proof of:

Theorem (W. Hodges, I. Hodkinson, D. Lascar, and S. Shelah (1993))

Aut Γ of the countable random graph Γ has the small index property.

- G = Aut Γ has a natural topology from S_ω: cosets of G_ā are basic opens.
- The small index property: Every H ≤ G with |G : H| < 2^ω is open.
- Topology of *G* determined by its **abstract** group structure.

Definition

- Whenever $H \ge G$ are finite graphs such that *every* partial automorphism of G is the restriction of an automorphism of H, H is called an **EPPA witness** for G.
- The EPPA numbers:

 $eppa(G) = min\{|H| : H \text{ is an EPPA-witness for } G\},\$

 $eppa(n) = max\{eppa(G) : |G| = n\}.$

Theorem (E. Hrushovski (1992))

$$2^{n/2} \le \operatorname{eppa}(n) \le (2n2^n)! < \infty$$

Challenge (E. Hrushovski (1992))

Improve the bounds!

D. Bradley-Williams (Charles, Prague)

Theorem (Herwig, Lascar (2000))

For every G with n vertices, m edges and maximum degree Δ we have that eppa $(G) \leq {\binom{\Delta n-m}{\Delta}} \in n^{\mathcal{O}(\Delta)}$.

In particular, bounded degree graphs have polynomial EPPA numbers. Witnesses are Δ -set intersection graphs:

Johnson graphs or complements of Kneser graphs.

Corollary (Herwig, Lascar (2000))

$$\operatorname{eppa}(n) \leq \left(rac{3en}{4}
ight)^n.$$

Theorem (Evans, Hubička, Konečný, Nešetřil (2021))

Valuation construction: $eppa(n) \le n2^{n-1}$.

A lower bound

Observation (B-W, Cameron, Hubička, Konečný (2025))

 $\Omega(2^n/\sqrt{n}) \leq \operatorname{eppa}(n).$

Proof (basically Hrushovski'92 with a different graph).

- Every permutation of the left part is a partial automorphism of *G*.
- Claim: In every EPPA-witness, for every $S \in {[n] \choose n/2}$, there is a vertex connected to S and not to $[n] \setminus S$.
- Pick arbitrary $S \in {[n] \choose n/2}$.

• eppa
$$(G) \geq {n \choose n/2} \in \Omega(2^n/\sqrt{n}).$$

Observation

If G contains an independent set I and a vertex connected to exactly k members of I then $eppa(G) \ge \binom{|I|}{k}$.

Corollary (B-W, Cameron, Hubička, Konečný (2025))

If G is triangle-free with maximum degree Δ then

 ${\sf eppa}(G)\in \Omega(n^{\Delta}).$

Corollary (B-W, Cameron, Hubička, Konečný (2025))

Cycles have quadratic EPPA numbers, in fact:

$$rac{1}{8}n^2 + o(n^2) \leq ext{eppa}(C_n) \leq rac{1}{2}n^2 + o(n^2).$$

What is the correct coefficient?

Theorem (B-W, Cameron, Hubička, Konečný (2025))

 $\Omega(2^n/\sqrt{n}) \le \operatorname{eppa}(n) \le n2^{n-1},$

the upper bound from the valuation graph construction of EHKN.

While some families have much smaller upper bounds:

- (Induced) subgraphs of finite homogeneous graphs;
- Q Cycles C_n have eppa(C_n) asymptotically quadratic (the upper bound coming from Johnson graphs).

Problem

When are these upper bounds attained? When are the associated EPPA witnesses **smallest** possible?

Theorem (T. Gardiner (1976))

The finite homogeneous graphs are:

- disjoint unions of cliques K_n, complements of these;
- The 5-cycle C₅;
- $L(K_{3,3})$, the line graph of complete bipartite graph $K_{3,3}$.

Note: C_6 , P_4 , $K_1 \cup K_{1,2} \leq L(K_{3,3})$.

Exercise: Is $L(K_{3,3})$ a smallest EPPA witness for these graphs?

Observation

Suppose that *H* is an EPPA witness for *G*. Then Aut(H) has a section isomorphic to Aut(G); in particular, |Aut(G)| divides |Aut(H)|.

Proof.

From the definition of EPPA witness, we see that the setwise stabiliser of V(G) in Aut(H) induces Aut(G) on V(G).

Lemma (B-W, Cameron, Hubička, Konečný)

Let G be a graph, and H an EPPA witness for G with the smallest number of vertices and, subject to that, the smallest number of edges. Suppose that neither G nor G' is a disjoint union of complete graphs.

- **1** *H* is vertex-transitive.
- **2** *H* is arc-transitive (arc = oriented edge).
- Either H is vertex-primitive, or the vertex set of G contains at most one point of any block of imprimitivity for Aut(H).

So minimality of an EPPA witness H can sometimes (say when |G| < |H| < 2|G|) can be **verified** by considering possibilities of primitive groups of degree d, |G| < d < |H|.

Scarcity of primitive permutation groups

Degree	Nr Permutation Groups	Nr Primitive Groups
	OEIS : A000019	OEIS : A000638
1	1	1
2	1	1
3	2	2
4	4	2
5	11	5
6	19	4
7	56	7
8	96	7
9	296	11
10	554	9
11	1593	8
12	3094	6
13	10723	9
14	20832	4

D. Bradley-Williams (Charles, Prague)

Proposition

 $L(K_{3,3})$ is a smallest EPPA witness for C_6 .

Proof.

•
$$|L(K_{3,3})| = 9$$
 and $|C_6| = 6$;

- by the lemma, a smaller EPPA witness has vertex-primitive automorphism group of degree 7 or 8 with Aut(C₆) (order 12) as a section.
- After checking the few possibilities (e.g. with GAP libraries for primitive groups), see that there is no such primitive group.

Proposition (B-W, Cameron, Hubička, Konečný (2025))

Let G be a graph on n vertices, which has a smallest EPPA-witness H on fewer than (5/4)n vertices. Then H is homogeneous.

Proof.

k-homogeneous: any isomorphism between induced subgraphs on at most k vertices extends to an automorphism. We use two ingredients in the proof:

- (a) (Π . Neumann's Separation Lemma). Let A and B be subsets of the domain of a transitive permutation group G of degree n. If $|A| \cdot |B| < n$, then there exists $g \in G$ such that $Ag \cap B = \emptyset$.
- (b) (P. Cameron). A 5-homogeneous graph is homogeneous.

Theorem (B-W, Cameron, Hubička, Konečný (2025))

Let G be a graph on n vertices, and H a smallest EPPA-witness for G with fewer than 2n vertices. Then Aut(H) is a rank 3 permutation group on V(H).

Proof.

Using P. Neumann's Separation Lemma with 2 replacing 5, get H is 2-homogeneous: Aut(H) is transitive on vertices, oriented edges, and oriented non-edges; the definition of rank 3.

Work in progress with S. Brenner

Classifying the graphs G on n vertices which have an EPPA witness on at most 2n vertices.

Corollary (B-W, Cameron, Hubička, Konečný (2025))

The n-cycles C_n have $eppa(C_n)$ asymptotically quadratic.

Theorem (B-W, Cameron, Hubička, Konečný)

For all but finitely many n, a smallest EPPA witness of C_n is the Johnson graph J(n,2) on $\binom{n}{2}$ vertices.

This means almost always attaining the bound from the Herwig-Lascar construction with the graph on 2-sets defined by

 $u \sim v := |u \cap v| = 1.$

Theorem (B-W, Cameron, Hubička, Konečný)

For all but finitely many n, a smallest EPPA witness of C_n is the Johnson graph J(n,2) on $\binom{n}{2}$ vertices (including n = 7).

Via our Main Lemma a major application of the following is used.

Theorem (A. Maróti (2002) applying the greatness of CFSG)

Let G be a primitive group of degree N which is not S_N or A_N . Then one of the following possibilities occurs:

- (a) For some integers m, k, l, we have $N = {\binom{m}{k}}^{l}$, and G is a subgroup of $S_m \wr S_l$, where S_m is acting on k-subsets of $\{1, \ldots, m\}$, and G contains $(A_m)^{l}$;
- (b) *G* is M_{11} , M_{12} , M_{23} or M_{24} in its natural 4-transitive action; (c) $|G| \le N \cdot \prod_{i=0}^{\lfloor \log_2 N \rfloor - 1} (N - 2^i).$

Imprimitive case: Double covers

- What happens in the Aut H imprimitive case of the Main Lemma?
- G is embedded as a transversal across the blocks of Aut H.
- In the case of blocks of size 2: H is a double cover of G.
- This took us on a tour though two-graphs, Seidel switching, and connected metrically-homogeneous finite graphs (classified by Peter in 1980) which we don't have time for today.
- One of the latter is the **isocahedron** with group $A_5 \times C_2$:

Isocahedron graph (from D. Mugnolo, M. Plümer)

Some imprimitive EPPA double covers. (B-W, Cameron, Hubička, Konečný)

The icosahedron graph (on 12 vertices) is a **smallest** EPPA witness for both the spokeless wheel and the legged triangle (on 6 vertices).

Isocahedron graph with embedded W (edited from D. Mugnolo, M. Plümer)

Isocahedron here is significantly better than Herwig-Lascar: $|HL(W)| = |J(6.2 - 5, 2)| = \binom{7}{2} = 21$ $|HL(L)| = \binom{12}{3} = 220.$

Isocahedron graph with embedded W (edited from D. Mugnolo, M. Plümer)

Isocahedron smallest EPPA witness for W.

- Note $|\operatorname{Aut} W| = |D_{10}| = 10$ and consider H with |H| < 12.
- By Main Lemma, Aut(H) primitive of degree *n* with 6 < n < 12.
- Only possible Aut(H) with order divisible by 10 is S_5 acting on 10.
- Corresponding graphs are the Petersen graph or complement $L(K_5)$.
- Neither embeds *W* so they are not EPPA witnesses.

Big Open Question: Herwig–Lascar (2000)

Does the class of finite tournaments have EPPA?

Questions on EPPA numbers (See paper for more)

- We still have a factor $n^{3/2}$ between the lower bound and the upper bound for eppa(n). What is the correct bound?
- Let G be the lower-bound graph from earlier, we calculated $\Omega(2^n/\sqrt{n}) \leq \operatorname{eppa}(G)$. What is the EPPA number of G?
- What are the EPPA numbers of Payley graphs? Half-graphs?

We have got a lot out of considering how Aut G compares to Aut H.

Speculation

Plso(G) and Plso(H) are **inverse monoids** and perhaps their relationship could say a lot more...

Thank you for your attention!

From images.ansharimages.com

D. B-W, P. J. Cameron, J. Hubička, M. Konečný,
 EPPA numbers of graphs, Journal of Combinatorial Theory Series
 B, Volume 170, Pages 203–224 (2025).
 EPPA numbers of graphs II, coming soon to Arxiv.

D. B-W, S. Brenner, **EPPA witnesses with two blocks of imprimitivity on edges**, coming soon to Arxiv and EUROCOMB25.

D. Bradley-Williams (Charles, Prague)

Extending partial auts of graphs

July 2025 24 / 24