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Thank you Peter, time to party!

On the day of my PhD viva (2015)
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EPPA: Extension Property for Partial Automorphisms

Definition (EPPA: Extension Property for Partial Automorphisms)

Let C be a class of finite structures. Here G ≤ H (induced) in C .

When every partial automorphism of G extends to an automorphism
of H, H is called an EPPA witness for G .

If every G in C has an EPPA witness in C , say C has EPPA.

Theorem (E. Hrushovski (1992))

The class of finite graphs has EPPA.

Hence sometimes called the Hrushovski Property.
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Examples: Subgraphs of finite homogeneous graphs

Definition (Homogeneous finite graph)

H homogeneous:
every partial automorphism of H extends to an automorphism;
= H is an EPPA witness of itself.

Theorem (T. Gardiner (1976))

The finite homogeneous graphs are:

disjoint unions of cliques Kn, complements of these;

The 5-cycle C5;

The rooks graph L(K3,3) = line graph of complete bipartite graph
K3,3.

Note: C6, P4, K1 ∪ K1,2 ≤ L(K3,3). So L(K3,3) is an EPPA witness for
them.
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A motivation and generics

Theorem (E. Hrushovski (1992))

The class of finite graphs has EPPA.

A (final) combinatorial ingredient required in the proof of:

Theorem (W. Hodges, I. Hodkinson, D. Lascar, and S. Shelah
(1993))

Aut Γ of the countable random graph Γ has the small index property.

G = Aut Γ has a natural topology from S𝜔:
cosets of Gā are basic opens.

The small index property:
Every H ≤ G with |G : H| < 2𝜔 is open.

Topology of G determined by its abstract group structure.
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Definition

Whenever H ≥ G are finite graphs such that every partial automor-
phism of G is the restriction of an automorphism of H, H is called an
EPPA witness for G .

The EPPA numbers:

eppa(G ) = min{|H| : H is an EPPA-witness for G},

eppa(n) = max{eppa(G ) : |G | = n}.

Theorem (E. Hrushovski (1992))

2n/2 ≤ eppa(n) ≤ (2n2n)! < ∞

Challenge (E. Hrushovski (1992))

Improve the bounds!
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Upper bounds

Theorem (Herwig, Lascar (2000))

For every G with n vertices, m edges and maximum degree Δ we have
that eppa(G ) ≤

(︀Δn−m
Δ

)︀
∈ n𝒪(Δ).

In particular, bounded degree graphs have polynomial EPPA numbers.
Witnesses are Δ-set intersection graphs:
Johnson graphs or complements of Kneser graphs.

Corollary (Herwig, Lascar (2000))

eppa(n) ≤
(︂
3en

4

)︂n

.

Theorem (Evans,Hubička, Konečný, Nešeťril (2021))

Valuation construction: eppa(n) ≤ n2n−1.
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A lower bound

Observation (B-W, Cameron,Hubička, Konečný (2025))

Ω(2n/
√
n) ≤ eppa(n).

Proof (basically Hrushovski’92 with a different graph).

Every permutation of the left part is a
partial automorphism of G .

Claim: In every EPPA-witness, for
every S ∈

(︀ [n]
n/2

)︀
, there is a vertex

connected to S and not to [n] ∖ S .
Pick arbitrary S ∈

(︀ [n]
n/2

)︀
.

eppa(G ) ≥
(︀ n
n/2

)︀
∈ Ω(2n/

√
n).
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Observation

If G contains an independent set I and a vertex connected to exactly k
members of I then eppa(G ) ≥

(︀|I |
k

)︀
.

Corollary (B-W, Cameron,Hubička, Konečný (2025))

If G is triangle-free with maximum degree Δ then

eppa(G ) ∈ Ω(nΔ).

Corollary (B-W, Cameron,Hubička, Konečný (2025))

Cycles have quadratic EPPA numbers, in fact:

1

8
n2 + o(n2) ≤ eppa(Cn) ≤

1

2
n2 + o(n2).

What is the correct coefficient?
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Summary

Theorem (B-W, Cameron,Hubička, Konečný (2025))

Ω(2n/
√
n) ≤ eppa(n) ≤ n2n−1,

the upper bound from the valuation graph construction of EHKN.

While some families have much smaller upper bounds:

1 (Induced) subgraphs of finite homogeneous graphs;

2 Cycles Cn have eppa(Cn) asymptotically quadratic (the upper bound
coming from Johnson graphs).

Problem

When are these upper bounds attained?
When are the associated EPPA witnesses smallest possible?
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Subgraphs of finite homogeneous graphs

Theorem (T. Gardiner (1976))

The finite homogeneous graphs are:

disjoint unions of cliques Kn, complements of these;

The 5-cycle C5;

L(K3,3), the line graph of complete bipartite graph K3,3.

Note: C6, P4, K1 ∪ K1,2 ≤ L(K3,3).

Exercise: Is L(K3,3) a smallest EPPA witness for these graphs?
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Tools: The automorphism groups

Observation

Suppose that H is an EPPA witness for G .
Then Aut(H) has a section isomorphic to Aut(G );
in particular, |Aut(G )| divides |Aut(H)|.

Proof.

From the definition of EPPA witness, we see that the setwise stabiliser of
V (G ) in Aut(H) induces Aut(G ) on V (G ).
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Tools: The automorphism groups

Lemma (B-W, Cameron,Hubička, Konečný)

Let G be a graph, and H an EPPA witness for G with the smallest num-
ber of vertices and, subject to that, the smallest number of edges. Sup-
pose that neither G nor G ′ is a disjoint union of complete graphs.

1 H is vertex-transitive.

2 H is arc-transitive (arc = oriented edge).

3 Either H is vertex-primitive, or the vertex set of G contains at most
one point of any block of imprimitivity for Aut(H).

So minimality of an EPPA witness H can sometimes (say when
|G | < |H| < 2|G |) can be verified by considering possibilities of primitive
groups of degree d , |G | < d < |H|.
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Scarcity of primitive permutation groups

Degree Nr Permutation Groups Nr Primitive Groups
OEIS : A000019 OEIS : A000638

1 1 1
2 1 1
3 2 2
4 4 2
5 11 5
6 19 4
7 56 7
8 96 7
9 296 11

10 554 9
11 1593 8
12 3094 6
13 10723 9
14 20832 4
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Sample argument

Proposition

L(K3,3) is a smallest EPPA witness for C6.

Proof.

|L(K3,3)| = 9 and |C6| = 6;

by the lemma, a smaller EPPA witness has vertex-primitive automor-
phism group of degree 7 or 8 with Aut(C6) (order 12) as a section.

After checking the few possibilities (e.g. with GAP libraries for primi-
tive groups), see that there is no such primitive group.
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Very small EPPA witnesses

Proposition (B-W, Cameron, Hubička, Konečný (2025))

Let G be a graph on n vertices, which has a smallest EPPA-witness H on
fewer than (5/4)n vertices. Then H is homogeneous.

Proof.

k-homogeneous: any isomorphism between induced subgraphs on at most
k vertices extends to an automorphism. We use two ingredients in the
proof:

(a) (Π. Neumann’s Separation Lemma). Let A and B be subsets of the
domain of a transitive permutation group G of degree n. If |A| · |B| <
n, then there exists g ∈ G such that Ag ∩ B = ∅.

(b) (P. Cameron). A 5-homogeneous graph is homogeneous.

...
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Small EPPA witnesses

Theorem (B-W, Cameron, Hubička, Konečný (2025))

Let G be a graph on n vertices, and H a smallest EPPA-witness for G
with fewer than 2n vertices. Then Aut(H) is a rank 3 permutation group
on V (H).

Proof.

Using P. Neumann’s Separation Lemma with 2 replacing 5, get H is 2-
homogeneous: Aut(H) is transitive on vertices, oriented edges, and ori-
ented non-edges; the definition of rank 3.

Work in progress with S. Brenner

Classifying the graphs G on n vertices which have an EPPA witness on at
most 2n vertices.
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Vertex primitive case: almost all cycles

Corollary (B-W, Cameron, Hubička, Konečný (2025))

The n-cycles Cn have eppa(Cn) asymptotically quadratic.

Theorem (B-W, Cameron, Hubička, Konečný)

For all but finitely many n, a smallest EPPA witness of Cn is the Johnson
graph J(n, 2) on

(︀n
2

)︀
vertices.

This means almost always attaining the bound from the Herwig-Lascar
construction with the graph on 2-sets defined by

u ∼ v := |u ∩ v | = 1.
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Vertex primitive case: almost all cycles

Theorem (B-W, Cameron, Hubička, Konečný)

For all but finitely many n, a smallest EPPA witness of Cn is the Johnson
graph J(n, 2) on

(︀n
2

)︀
vertices (including n = 7).

Via our Main Lemma a major application of the following is used.

Theorem (A. Maróti (2002) applying the greatness of CFSG)

Let G be a primitive group of degree N which is not SN or AN . Then one
of the following possibilities occurs:

(a) For some integers m, k , l , we have N =
(︀m
k

)︀l
, and G is a subgroup

of Sm ≀ Sl , where Sm is acting on k-subsets of {1, . . . ,m}, and G
contains (Am)

l ;

(b) G is M11, M12, M23 or M24 in its natural 4-transitive action;

(c) |G | ≤ N ·
⌊log2 N⌋−1∏︁

i=0

(N − 2i ).
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Imprimitive case: Double covers

What happens in the AutH imprimitive case of the Main Lemma?

G is embedded as a transversal across the blocks of AutH.

In the case of blocks of size 2: H is a double cover of G .

This took us on a tour though two-graphs, Seidel switching, and con-
nected metrically-homogeneous finite graphs (classified by Peter in
1980) which we don’t have time for today.

One of the latter is the isocahedron with group A5 × C2:

Isocahedron graph (from D. Mugnolo, M. Plümer)

The spokeless wheel W .
The legged triangle L.
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Some imprimitive EPPA double covers. (B-W, Cameron, Hubička,
Konečný)

The icosahedron graph (on 12 vertices) is a smallest EPPA witness for
both the spokeless wheel and the legged triangle (on 6 vertices).

Isocahedron graph with embedded W (edited from D. Mugnolo, M. Plümer)

Isocahedron here is significantly better than Herwig-Lascar:
|HL(W )| = |J(6.2− 5, 2)| =

(︀7
2

)︀
= 21

|HL(L)| =
(︀12
3

)︀
= 220.
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Isocahedron graph with embedded W (edited from D. Mugnolo, M. Plümer)

Isocahedron smallest EPPA witness for W .

Note |AutW | = |D10| = 10 and consider H with |H| < 12.

By Main Lemma, Aut(H) primitive of degree n with 6 < n < 12.

Only possible Aut(H) with order divisible by 10 is S5 acting on 10.

Corresponding graphs are the Petersen graph or complement L(K5).

Neither embeds W so they are not EPPA witnesses.
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Big Open Question: Herwig–Lascar (2000)

Does the class of finite tournaments have EPPA?

Questions on EPPA numbers (See paper for more)

We still have a factor n3/2 between the lower bound and the upper
bound for eppa(n). What is the correct bound?

Let G be the lower-bound graph from earlier, we calculated
Ω(2n/

√
n) ≤ eppa(G ). What is the EPPA number of G?

What are the EPPA numbers of Payley graphs? Half-graphs?

We have got a lot out of considering how AutG compares to AutH.

Speculation

PIso(G ) and PIso(H) are inverse monoids and perhaps their relationship
could say a lot more...
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Thank you for your attention!
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D. B-W, P. J. Cameron, J. Hubička, M. Konečný,
EPPA numbers of graphs, Journal of Combinatorial Theory Series
B, Volume 170, Pages 203–224 (2025).
EPPA numbers of graphs II, coming soon to Arxiv.

D. B-W, S. Brenner, EPPA witnesses with two blocks of imprimi-
tivity on edges, coming soon to Arxiv and EUROCOMB25.
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